

Computing with Charity Engine
DRAFT - WORK IN PROGRESS | Services are in active development and are subject to
change.

Contents
1. Overview
2. Interfaces
3. Applications
4. Input + Output Files
5. Distributed Storage
6. Networking
7. Instance Types
8. Support

1. Overview
Charity Engine provides a compute service running on volunteer devices. The system allows
one to run compute jobs, executing standard Docker images from Docker Hub, custom
docker containers or a set of proprietary applications for an additional fee.

Compute jobs can range from a single small job to a massively parallel compute job
spanning hundreds of thousands of nodes. All nodes have a limited network access allowing
one to retrieve input data from the files submitted during job creation or internet resources
that are available at HTTP(S) websites.

Resources are provisioned in a familiar “instance type” system, where various compute
nodes are made available in uniform sets of instances, differing in CPU capacity, memory
and disk availability.

To start computing, one must obtain credentials to the system and submit jobs through one
of the supported interfaces. The interfaces tailor to several of the use cases, such as manual
submission of jobs through a graphical web interface (useful for testing or submitting small
quantities of jobs), integration to the existing systems via a Remote API, or using Remote
CLI to get massively parallel executions with already-known tools such as GNU Parallel.

You will need your docker image name/URL or a proprietary application name, your input
files and the command line to execute within the executed environment. The command line
can be as simple as executing an application with a docker image, a command to execute
the first input file, or a more involved script that handles the logic of your job.

2. Interfaces
● Remote API

○ This API is provided for integration of Charity Engine as a backend service,
and summarizes functions for managing the entire lifecycle of jobs submitted
to the network.

● Remote CLI

○ The Remote CLI provides a means to run jobs on Charity Engine compute
resources using simple command line tools. (e.g. custom scripts or tools such
as GNU Parallel). This interface is geared toward running large batches of
jobs, but can be used anytime a command line approach is more appropriate
than a web API.

■ Standalone command-line interface

■ GNU Parallel (using Parallel allows you to manage batches of work
using just a single command line tool)

● Ethereum

○ Smart Contract

○ Dapp UI

● Web

○ A web-based GUI is available here.

● Custom Arrangements

○ contact@charityengine.com

3. Applications
Charity Engine supports several types of applications:

● Docker images available on Docker Hub (e.g. docker:python:3.7)

● Custom Docker images available anywhere online (e.g.
docker:image-name https://example.com/file for 64bit docker images, or
docker-x86:image-name https://example.com/file for 32bit docker images)

● Proprietary applications deployed directly on the Charity Engine network (e.g.
charityengine:wolframengine). The AppStore library can be viewed here.

https://docs.google.com/document/d/1Zwh3qIXieJO5roKn5SgLrOeCENWkTFAInj_PcxUGmx4/edit?usp=sharing
https://docs.google.com/document/d/1SWJ1VuSclIjqFBxwMXCqMBmAwa2AdkCaijawZLMKnMg/edit?usp=sharing
https://www.gnu.org/software/parallel/
https://docs.google.com/document/d/1V0iM-HztHBHBqrRg0Ebh8ZSdZshOdrdDhMlmdUvqDpg/edit?usp=sharing
https://docs.google.com/document/d/1qoQoPJNV0phA-5dVCiTI3TRVBzYahxQtaxqogcNb-W0/edit?usp=sharing
mailto:contact@charityengine.com

4. Input + Output Files
Once the computation environment runs, the input files provided during job completion are
downloaded from the internet and are made available for the applications on the compute
nodes in the /local/input virtual disk location.

If the input files are marked as cacheable, they might get cached on the compute node (*see
Interface documentation for details), and subsequent executions will skip the download and
use the cached file instead. Caching is done based on the file URL. If input file caching is
used, one should assume that files are immutable and use new URLs for any new version of
the file that is being created to ensure consistent behavior.

The output files of computations are expected to be written into /local/output virtual disk
location. The URLs to the output files or the output files themselves are then made available
in the output file section in all of the interfaces.

Some applications may not have options to change locations of their input/output files, or
modifications to the locations are not desirable, for example, to minimize testing required
when such changes are introduced. It is however possible to use simple shell tools to move
or copy files to their final locations, for example, by specifying the application command line
as follows:

containerized_app --param example; cp output_file /local/output/output_file

5. Distributed Storage
Distributed Storage is a networked file storage system which can be used to host large
quantities of data, with data persistently maintained and replicated across multiple devices
distributed worldwide. Access to this network is possible using all of the Charity Engine
interfaces such as the Remote API, Remote CLI, and Smart Contracts, as well as industry
standard IPFS client applications.

6. Networking
Network access through HTTP (port 80) and HTTPS (port 443) protocols is allowed. The
network speeds may vary based on the node location and the network/system load. Network
latency is artificially throttled to several seconds per request, but multiple parallel requests
are allowed and recommended.

Each compute reservation receives a limited amount of free bandwidth. Once the allocated
bandwidth is exhausted, any further network communication will incur additional fees.

Additionally, network requests can be routed through the Charity Engine Distributed Proxy
Service which uses the power and unique, geographically-dispersed nature of our network to
allow web requests to originate from locations around the world.

7. Instance Types
Initial service implementation defines three instance types (see below), where the first
number denotes the number of available vCPUs and the second number denotes the
amount of available RAM (in GiB).

General Purpose Computing - Linux
(*at launch)

vCPU RAM

C.2x2 2 2

C.2x4 2 4

C.4x4 4 4

GPU Computing (Nvidia) - Linux
(*at launch)

GPU Model GPU Count

N.1070x1 GeForce 1070 1

N.1070x2 GeForce 1070 2

N.1070x4 GeForce 1070 4

N.1070x8 GeForce 1070 8

N.1080x1 GeForce 1080 1

N.1080x2 GeForce 1080 2

N.1080x4 GeForce 1080 4

N.1080x8 GeForce 1080 8

N.T4x1 Tesla T4 1

N.T4x2 Tesla T4 2

N.T4x4 Tesla T4 4

https://www.charityengine.com/docs/Distributed+Proxy+Service
https://www.charityengine.com/docs/Distributed+Proxy+Service

N.T4x8 Tesla T4 8

N.V100x1 Tesla V100 1

N.V100x2 Tesla V100 2

N.V100x4 Tesla V100 4

N.V100x8 Tesla V100 8

7.1. Special Feature Flags
Workloads may require specific hardware and software features beyond those in the basic
instance specification above. This can be requested by use of flags in the instance request
interface. Note: use of such flags may {1} reduce available inventory, and {2} be subject to
additional charges.

Currently supported flags are:

● Tensorflow - Instance CPU with AVX support
● AVX - Instance CPU with AVX support
● Driver:nnn.nn - GPU driver version for GPU instances, such as 440.33.01

Flags are case insensitive.

7.2. Custom Arrangements
Custom arrangements may be possible; contact us if currently available instance types or
feature-sets are not suitable for your workloads.

8. Support
(*link to forums)

mailto:contact@charityengine.com

